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ABSTRACT 

In this article, we discuss fundamentals of the spectrum analysis 
in beam diagnostics, where several important particle motions in a cir- 
cular accelerator are considered. The properties of the Fourier 
transform are presented. Then the coasting and the bunched beam 
motion in both longitudinal and transverse are studied. The discussions 
are separated for the signal particle, multiple particle, and the 
Schottky noise cases. T o  demonstrate the interesting properties of the 
beam motion spectrum, time domain functions are generated, and then 
the associated spectra are calculated and plotted. In order to show the 
whole picture in a single plot, some data have been scaled, therefore 
they may not be realistic in an accelerator. 



I. Introduction 

In this article, we present fundamentals of the spectrum analysis in the beam diag- 

nostics, which is a very useful method in the analysis of the beam dynamics. Interesting 

discussions can be found in [1,2,4,6]. 

We consider circular particle accelerators. The beam can be unbunched or bunched, 

the motion of the beam is in both the longitudinal and the transverse. The motions of 

the particles in the beam can be coherent or incoherent, and these particles can be in 

various distributions. Moreover, due to the machine imperfections, the space charge, and 

the beam-beam effects, the various motions are correlated in one way or another. 

We first discuss properties of the Fourier transform, the Fourier transform for 

periodic functions, and the amplitude and energy spectra. The results are used to  study 

the spectrum for most important cases in beam diagnostics. The single particle case will 

be studied first, which includes the longitudinal and transverse motions, and each aspect 

is separated for coasting and bunched beams, respectively. Then, we consider the multi- 

ple particles, which can be distributed in different ways, but the particles are assumed to 

move together. Finally, under the assumption that the particles move independently, the 

Schottky noise is studied. 

Each spectrum analysis in the article represents some typical case. To demonstrate 

the relation between the time domain function and the frequency spectrum, time domain 

functions are generated for each case, and the corresponding frequency spectra are gen- 

erated by discrete Fourier transform (DFT). T o  present a clear view of the spectrum, the 

data  in some examples have to  be compromised, therefore the spectrum shown in this 

article may not be realistic, which implies that the ratio between different frequency com- 

ponents, the bandwidth of the frequency bands, and the frequency span for different 

motions may be scaled to show the whole picture in a single plot for some cases. 
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II. Preliminary 

2-1. Fourier Transform 

The Fourier transform of a time domain function f ( t )  is 

a3 

F ( u )  = s f ( t )  e - j w t d t  
-a3 

where F ( u )  is the frequency spectrum. In turn, the time domain function f ( t )  can be 

represented by the frequency spectrum F ( u )  as 

03 

In the follows, we present two useful properties of the Fourier transform in the 

spectrum analysis of beam diagnostics. 

The first property is the amplitude modulation of f ( t ) .  The following Fourier pair 

can be easily proved by using (2-1). For a real amplitude modulation of f ( t )  by cos uot, 

we have the follows, 

f ( t )  cos uot 4 - 1 [ F(u--CJO) + F(u+wo) ] 
2 

The second property is the time modulation of f ( t )  by rl, which is shown as, 

f ( t+  71) ---t e i w T I F ( w )  

If the modulation function is, 

r1 = r sin$ 

then the right side of (2-5) can be calculated by using [3], 

(2-4) 

(2-5) 

where R is an integer, and Jk is the Bessel function of order I C ,  which are shown Fig.1. 
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2-2. Fourier Transform of Periodic Functions 

The periodic function with period T, 

f ( t >  = f ( t -T )  
can be represented by the harmonics at n wo, wo = 2.rr/T, as, 

n =--03 

where 

(2-10) 

Equation (2-10) can be proved by using the orthogonality of the function e j w t ,  

which is 

n #m 
n =m (2-11) . 

- jm wot 
where n and m are integers. By multiplying both L-:S of (2-9) uy e and 

averaging over one period of T, (2-10) can be proved using (2-11). 

Consider a periodic function 

(2-12) 

where S represents a delta function. Let f ( t )  be represented by (2-9), then from (2-10) we 

have 

which shows that f ( t )  in (2-12) can be written as, 

Combining (2-12) and (2-14), we get an important equation, 

(2-13) 

(2-14) 
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j n  wot 
(2-15) 

wo O0 
co 

b(t--nT)=- e 
n =-co 2~ n=-m 

Furthermore, if we take the Fourier transform for both sides of (2-15), we have the 

follow in g equations , 

and 

In the last step of (2-17), we have used another identity of the orthogonality of the func- 

- j (w-n  wo)t 
tion e , i.e., [51, 

From (2-16) and (2-17), we get another important equation, 

co - j 27rn w/wo co 
C e  = (30 6 (w-n wo) 

n =-co n =--cb 

In general, for a periodic function 

then we have 

(2-18) 

(2-19) 

(2-20) 

(2-21) 

where F1(w) is the Fourier transform of f l ( t ) ,  and in the last step we have used (2-19). 
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The equation (2-22) shows that the overall frequency spectrum of a periodic func- 

tion f ( t )  is simply a sampling of the spectrum of the signal f , ( t ) .  The envelope of F ( w )  

is determined by F1(w),  while the sampling rate is determined by T. 

a 

2-3. Amplitude and Energy Spectra 

The Parseval’s theorem [5] shows that the energy of f ( t )  can be determined from 

the corresponding frequency spectrum F(w) ,  

(2-23) 

where IF(w) I is called the amplitude spectrum, and l F ( w )  l2 is called the energy spec- 

trum. 

In the beam signal measurement, the power of the signal is often of interest. The 

power of the time function f ( t )  can be described by the energy spectrum as follows, 

T co 

(2-24) 

It is often of interest t o  know the power Pa contained in a frequency band, with a center 

frequency wa and a frequency span Aw, 

wa-Aw/2 5 w <wa+Au/2 

This power can be shown as, 

(2-25) 

(2-26) 

where f a ( t )  is the associated time domain function. Considering that IF(w) l2 is the 

same for positive and negative frequencies, the factor 1/ (4nr)  in (2-24) becomes 1/(2nr) in 

(2-26). Letting A w  --+ 0, (2-26) shows that the power of the time domain function f a ( t )  

is proportional to  the energy spectrum 1F(w) 12. The process of the particle motion in an 

accelerator can be assumed to be stationary, Le., the process is not time dependent. 
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Therefore, an amplitude or energy spectrum can provide useful information for the beam 

diagnostics. 

In this article, the spectrum analysis of the beam diagnostics is shown by either the 

amplitude spectrum or the energy spectrum, depending on the requirement of the plot. In 

general the amplitude spectrum is used, however, if the ratio of the useful signal and the 

noises of the amplitude spectrum is small, the energy spectrum will be used. 

ID. Single Particle 

3-1. Longitudinal 

Let the revolution period of the particle in a circular accelerator be T ,  then the 

revolution frequency is 

2n wo = - 
T 

The single unit charge particle signal is, 

(3-1) . 

In Fig.2a we show three signals with the same amplitude and different period, i.e., T 

equals 0.3125 ps for rl, 0.625 ps for r2, and 1.25 ps for r3. 

Using (2-15) and (2-17), the frequency spectrum of f ( E )  is found, 

n =-co 

which shows that the frequency spectrum of f ( t )  is also a train of delta functions, the 

distance between pulses is uo, and the amplitude of the spectrum is determined by a fac- 

tor of wo. For the time domain signals shown in Fig.2a, the frequency spectra F(w)  are 

shown in Fig.2b. Note that wo of the spectra R1, R2, and R3 are 3.2 MHz, 1.6 MHz, and 

0.8 MHz, respectively. The amplitudes of the spectra also vary accordingly. 
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One may find the revolution frequency wo, or the revolution period T, from the fre- 

quency measurement of the beam signal. 
* 

3-2. Transverse 

The single particle transverse signal can be modeled as an amplitude modulation on 

the signal of (3-1) as, 

03 

f ( t )  = cos v1uot S(t--nT) 
n =-co 

(3-4) 

where v1 is the non-integer part of the betatron tune. In Fig.Qa, the signals r l ,  r 2  and r3, 

which are modulated with v1 equal 0, 0.125 and 0.25, respectively, are shown. 

Using (2-4) and (3-3), the frequency spectrum is readily shown as, 

1 
2 

F ( u )  = -[ F(w-v,wo) + F(w+v1wo) ] 
co 

“0 co = -[ 0 S ( ~ - n w ~ - - ~ ~ w ~ )  + 6(w-nuO+v1wO) 1 (3-5) 
n=-w n r-03 

For each delta pulse originally located at *nuo, the frequency spectrum becomes 

two pulses located at nwQ-vlwo and nwo+vlwo, and the amplitudes are reduced to  half. 

The distances of the betatron lines from nuo, by fvluo, are not dependent on n.  The 

amplitude spectra for the time signals shown in Fig.3a are shown in Fig.3b, where the 

frequency is indicated by the harmonics of the signals. 

The information of the betatron tune is contained in the betatron lines. 

In general, a closed orbit error or a deviation from the nominal energy can introduce 

a DC modulation for f ( E ) ,  and the modulation signal in (3-4), cos vIuQt, is replaced by 

a +cos vlwot, where a represents the combined DC modulation. The time domain signals 

are shown in Fig.3c, where r2  and r3 are modulated by the same DC signal a ,  but 

different frequencies as that  in Fig.3a. In Fig.3d, the amplitude spectra are shown. Note 

that  the betatron lines are not changed, and the pulses at nuo provides information on 
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the DC modulation a .  

3-3. Bunched, Longitudinal 

By ‘bunched’ we imply that the RF system is on, and therefore there will exist syn- 

chrotron oscillations. This is modeled as a time modulation of f ( t )  by, 

T, = T sin ust (3-6) 

where us is the synchrotron frequency. The time signal therefore can be written as, 

One signal without modulation and two signals modulated by 

different amplitudes, are shown in Fig.4a1 where the amplitude 

(3-7) 

the same frequency, but 

of the modulation signal 

of r3 is twice of the one for r2 .  

Using (2-16), the spectrum is found, 

(3-8) 
co j w r  sin 2 n n w s / w o  - j w 2 n n / w o  e - j w ( n T  - r sin w s n T ) -  03 

F ( u ) =  e - C e  
n =-co n =-co 

Using (2-7), the equation (3-8) is written as, 

(3-9) 

where in the last step we have used (2-19). 

The energy spectra of the signals shown in Fig.4a are shown in Fig.4b. We note 

that  in the energy spectra, instead of the original single pulse at nwQ, there is a synchro- 

tron satellite, each synchrotron line is distanced from the adjacent one by the synchro- 

tron frequency us. The 0th order synchrotron lines locate exactly at the harmonics of 

n uols, their amplitude are determined by Jo. The kth order synchrotron lines are dis- 

tanced from n uo by &kus, and their amplitude are determined by Jk. When COT is sub- 
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stantially smaller than k, the lcth sidebands will have small amplitude, which can be 

observed in Fig.4b. 

From the measurement, we may directly find the synchrotron frequency. By match- 

ing the Bessel function curves, one may also find the synchrotron oscillation amplitude T. 

3-4. Bunched, Transverse 

In the bunched beam transverse signal, the amplitude modulation is combined by a 

time modulation. The signal is, 

co 
f ( t )  = COS vlwot C 6 (t--nT+~ sin wsnT) 

n =--a 
(3-10) 

One original signal r l  and two signals modulated with same ws, but different vl and T,  

are shown in Fig.5a, where v1 and T of r3  are twice of that  of r2. By using (3-5) and (3- 

9), the frequency spectrum can be written as, 

n =-co 
co co + Jk(cJ7Jrv1woT) 6 (w-n CJO-k CJS+V~CJ,) ] (3-11) 

k=-m n =-co 

The energy spectra of the signals shown in Fig.5a are shown in Fig.5b. We observe 
. that  the distance of the two betatron lines at each harmonic of R3 is twice of that  of R P .  

For each betatron line, there is a synchrotron satellite. The amplitude of the syn- 

chrotron satellites are determined by u0/2 and J k ( w  f vlbo~). 

After the synchrotron lines are identified from the betatron lines, one may find the 

synchrotron and betatron frequencies. 

IV. Multiple Particles 

The beam with short bunches may be considered as the single particle. In general, 

the particle distribution has to  be considered if the bunches are not very short. There are 
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many possible particle distributions, such as Gaussian, Lorentzian, parabolic, etc. In this 

section, we take the Gaussian distribution as example, for others, similar means can be 

applied. 

Consider the' Gaussian distribution in time domain, 

j l ( t )  = e-u2t2 (41) 

which is shown in Fig.Ga, where the unity amplitude and the standard deviation of 

l/(2lI20) are also shown. Note that the full bunch length is 4 times of the standard devi- 

ation, i. e. , TL =2x 2lI2/0. 

The frequency spectrum is [3], 

71112 -e- w2/4u2 
(4-2) 

0 F l ( 4  = 

which is shown in Fig.Gb, also shown are the amplitude d12/o, and the effective 

b and width 2lI20. 

4-1. Longitudinal 

We consider the periodic function with the period T and each pulse of the function 

with the Gaussian distribution j l(t), 

n --m n =-w 

Two such functions with different period are shown in Fig.7a. 

Using equations (2-22) and (42), the frequency spectrum is readily written as, 

n =--03 U n =--03 

The amplitude spectra for the functions shown in Fig.7a are shown in Fig.7b. The the 

spectrum has a same envelope as the spectrum of Fl(w) of j l ( t ) ,  but it is sampled with 

the frequency period of uo = 27r/ T. Also the amplitude is also changed by a factor of wo. 
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In addition to  the information of wo, from the shape of the spectrum envelope, one 

may find the particle distribution, and from the bandwidth of the spectrum envelope, 0 
one may find the bunch length. 

4-2. Transverse 

In this case the time function is, 

co U2( t --n T ) 2  

j ( t )  =COS vlw0t e-  (45) 

and using (3-5) and (4-4) the spectrum is found, 

(4-6) 
2 4 u 2  + 5 e-  (w+vlw~) 1 s (w-n wo+vlwo) 1 

n =-co 

The amplitude spectra of the two modulated time domain signals on r l  and r2 in Fig.7a1 

by the same betatron frequency, are shown in Fig.8. Note that the shape of the overall 

spectrum is still the Gaussian, the amplitude of the two betatron line for each harmonic 

and e-(w+vlwo)2/4n2 , respectively. Therefore, they are modulated by e 

only differ by a frequency shift. 

-( W - - V , W O ) ~ / ~ U ~  

The information contained are the betatron frequency, the time domain distribu- 

tion, and the bunch length. 

4-3. Bunched, Longitudinal 

The time domain function is, 

n =-m 

and using (3-9) and (4-4) the spectrum is found, 



- 12 - 

The amplitude spectra of the modulated time domain signals on r l  and r2  in Fig.7a, by 

the same synchrotron frequency ws and amplitude 7, are shown in Fig.9. The amplitude 

of the synchrotron lines are determined by both the Bessel function J k ( m )  and the Gaus- 

sian envelope eWW / . Therefore, for the pulses located at the harmonics, the amplitude 

is determined by J 0 ( w )  and e- W2/4u2, which can be observed in Fig.9. For the ampli- 

tudes of the first and second synchrotron lines, the influence of J1(u) and J 2 ( w )  can 

2 4u2 

also be observed. 

4-4. Bunched, Transverse 

In this case the time domain function is, 

W - u2(t-nT+T sin wsnT)2 j ( t )  =COS vpot e 
n =--00 

(49)  

and using (2-4) and (4-8) the spectrum is found, 

k=-m n =-w 

The amplitude spectra of the modulated signals on r l  and r2  in Fig.7a, by the same 

betatron and the same synchrotron frequencies, are shown in Fig.10. 

V. Schottky Noise 

In the last section, we have assumed that in a bunch all particles move altogether, 

i.e., there are no spread of momentum, and no spread of betatron and synchrotron fre- 

quencies. In reality, more or less the particles are moving independently. The situation 

can be represented as the Schottky noise [I]. 



5-1. Longitudinal 

We assume that the particles move in slightly different revolution times Ti. Let 

there be N particles. The time domain signal is, 

From (3-3) the frequency spectrum is simply, 

Where wi=2.1r/Ti, and we assume that the distribution of the deviation of Ti from T ,  

therefore the deviation of ui from wo, are random and small. 

T o  find the bandwidth of the frequency band at the n th  harmonic, we let 

Aw/2  = max { lwi-wo I} (5-3) 

We also define a A function of the variable of the delta function in (5-2) as, 

A( w-n w i )  = w-n ( wo+Aw/2) = w-n wo-n Aw/2 (5-4) 

which indicates that  the amplitude spectrum of the n t h  harmonic is centered at nuo, 

with the half bandwidth n Aw/2, and therefore the bandwidth n Aw. It is clear that the 

bandwidth of the power spectrum will be larger as n becomes larger. 

In the next, we discuss the energy contained in each harmonic band. Here the relai- 

tive phase between the particles must be considered. We assume that the particles are 

randomly distributed in azimuth, therefore the equation (5-1) becomes, 

where ti represents the time, and therefore the azimuth, distribution of the i t h  particle. 

Using (2-5) the frequency spectrum becomes, 

03 j w t i  N 
F ( u )  = C w i e  ~ ( w - T z w ~ )  (5-6) 

i=l n =--co 
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Consider only the n t h  harmonic. Taking the average of the energy spectrum over 

8 the particles, we have, 

where the symbol < > n  denotes the averaging over the n th harmonic, and F*(w) is the 

conjugate of F(w).  In the fourth step of (5-7), we have used the fact that  for many ran- 

domly distributed particles in azimuth, the averaged phase factor is zero unless t i = t P ,  

which eliminates one summation. In this equation, we also assumed temporarily that 

wi =wp . 

This result can be easily extended to  the case where wi=wp is not required, Le., 

there exists a frequency band instead of a pulse at the n t h  harmonic. The  particles can 

be separated into, say, M groups. In the mth  group, there are N,,, particles, whose revo- 

lution frequency is the same. The equation (5-7) can be used to evaluate the energy of the 

particles in each group, which equals wiN,,, for mth  group. Since the frequencies between 

the groups are not overlapped, the total energy in the band is simply, 

M 

m=l  
< IF(w) 12>, = W: N,,, = w ~ N  (5-8) 

The equations (5-7) and (5-8) show that if the phases of the particles are randomly 

distributed, the energy contained in a narrow band is proportional to the total number 

of the particles N ,  because of the phase factor cancellation. Also the energy contained in 

each band is independent of n. 

In the beam spectrum observation, both positive and negative frequencies contri- 

bute. Therefore, if the real measurement is considered a factor of 2 should be multiplied 

to  the results shown in (5-7) and (5-8), 
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In Fig.11, the energy spectrum of the longitudinal Schottky noise is shown. The 

amplitude spectrum could be used, however, since the ratio of the useful signal to the 

noises in the DFT is not large, the energy spectrum provides a clearer picture. Note that 

the energy contained in each harmonic band is approximately the same. Consider that 

the bandwidth of the bands is larger when n becomes larger, the amplitude of the energy 

spectrum will be smaller as n becomes larger. If n is even larger, the energy spectrum 

will eventually overlap. 

In general, the frequency spread is due to  the particle momentum spread, therefore 

using the relation, 

AP A w = -  *0V- 
P 

(5-9) 

where q is the frequency slip factor, we can find the momentum spread Aplp from the 

frequency spread in the spectrum. 

5-2. Transverse 

Let uo and vi be the non-integer parts of the betatron tune corresponding to wo and 

wi ,  respectively, and let u be the betatron tune corresponding to uo. The time domain 

signal is, 

N c a  
f ( t )  = cos ( 2 r v i t / T i )  S( t -nTi)  

Using (3-5) and (5-2)  the frequency spectrum is found to  be, 

i = l n  =-ca 
(5-10) 

wo N O3 

M -E Q E [ S(w-nwi-uiwi) +S(w-nwi+uiwi) ]  

which shows that for the n th harmonic, the frequency band splits into two sidebands at 

( n  Auo)cJa. 
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To find the bandwidth of each band, we need the follows. Let Au be the spread of 

betatron tune, which comes from the particle momentum spread. We have 

(5-12) 

where 

related to  the revolution frequency spread by, 

is the machine chromaticity. Combined with (5-9), the betatron tune spread is 

(5-13) 

Using the definition of (5-3), we consider the half bandwidth of the first sideband in 

the n th harmonic, represented by the variable in the first delta function in ( 5 - l l ) ,  

A(w-n wi-ui w i )  = w - n(uo+Aw/2)-(uo-Au/2)(uo+Aw/2) 
M w - ( n  -uo)uo-( n A W / ~ - W ~ A ~ / ~ + U ~ A W / ~ )  (5-14) 

Note that in this equation, we have used the fact that  the frequency spread of wo+Aw/2 

is associated with the betatron tune spread of uo-Au/2, which is shown in (5-13). Also 

using (5-13), the equation (5-14) becomes, 

A(w-n wi -vi w i )  M cJ-(n -uo)uo-(n +-+uo)Aw/2 t u  (5-15) 
rl 

For another sideband, we have, 

A( w-n wi +vi wi ) M u-( n +uo)wo-( n --- tu u0)Au/2 (5-16) 
rl 

which shows that  for the n t h  harmonic the two sidebands are approximately at 

(n+uo)uo, with the bandwidth ( n f - f u o ) A w ,  t u  respectively, i.e., the bandwidth of the 
rl 

two sidebands are different. If n becomes larger, the bandwidth of both sidebands will be 

larger, but the difference between the two bandwidth stays the same, which is 

2( -+uO)AW. t u  
rl 

Using the same approach as that  in (5-5), (5-6), (5-7), and (5-8), the energy con- 

tained in one of the sidebands, which is denoted by n 1 ,  can be found as, 



(5-17) 

which indicates that  the energy contained in the two sidebands are the same, and also 

they are not dependent on n ,  which is shown in Fig.12. 

One may find vo by allocating the sideband center. Then the frequency spread Aw 

can be found by using (5-15). Using (5-13), the betatron tune spread Av can be found. 

If the betatron tunes of the particles are with different amplitude ai and different 

initial phase q5j, then cos (27rvitlTi) in (5-10) can be replaced by aicos (2nvit/Ti+q5i), 

and also the corresponding spectrum can be calculated. 

5-3. Bunched, Longitudinal 

In this section, we assume a simple case that the particles ar randomly distributed 

in synchrotron oscillation frequency wsi , but there is no revolution frequency spread. 

Thus, the time domain function is, 

N w  
j ( t )  = S(t-nT+.rsin(wsinT)) (5-18) 

i=ln=-oc, 

Similar to  (3-9), the frequency spectrum is, 

N c o  co 

i= lk=-co  n =-w 
F ( w )  = wo J k ( w )  C S(cJ-nwo-kwsi) (5-19) 

For the bandwidth of the n t h  harmonic and the k th  synchrotron sideband, we have 

the A function as, 

A( w-n wo-k wsi ) = w-n wo-k wso-k Aws /2 (5-20) 

where wso and Aws/2 are defined similarly to  wo and Awl2 for the revolution frequency 

spread. 

The equation (5-20) shows that for a given n ,  there are synchrotron side distribu- 

tions located around kwso, the bandwidth is determined by kAws. As k becomes larger, 

the bandwidth will be larger. It is noted that the bandwidth is not dependent on n. At 
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k=O, the frequency band‘is simply a delta function. 

To estimate the energy contained in each band, we first rewrite (5-18) as, 

N m  
j ( t )  = S(t--nT+7sin(wSinT+dsi)) (5-21) 

i=ln=.-m 

where dsi denotes the synchrotron oscillation phase distribution, which is assumed to be 

random. Using (2-7), the frequency spectrum is, 

(5-22) 
n =--03 

Note that for the pulses located at k=O, there is no phase spread. Therefore, to  cal- 

culate the energy contained in these pulses, the approach of (5-7) cannot be used. In fact 

the energy contained in the n t h  harmonic and k=O pulses is 

N N  

i=l p = l  
< IF(w) 12>n,o = < u ~ C  J:(n~O7)S(w-nw~)S(w-n~~)> M u ~ J ~ ( ~ w ~ T ) N ~  (5-23) 

which shows that the energy is proportional to the square of the number of the particles. ’ 

For the sidebands where k#O, there is phase spread, and therefore the similar 

approach to (5-7) and (5-8) can be used. The result is that for n th harmonic and the kth 

sideband, the energy contained in each band is, 

< IF(u)  I2>n,k M IJo2Jt(nwo~)N 

which is determined by Jt(wr) ,  wi, and N ,  but independent of n 

(5-24) 

An example of such 

energy spectrum is shown in Fig.13a. A blow-up of the energy spect-um at the harmonics 

from 2 t o  4 is shown in Fig.13b. Several phenomena discussed above can be observed. 

Using the identity, 

the equation (5-24) becomes, 

(5-25) 

(5-26) 
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In general, in addition to  the revolution frequency spread and different initial phase 

for each particle, the synchrotron oscillation amplitude for each particle is also different. 

We may replace S (t--nT+.rsin wsinT) in (5-18) by S(t-nTi+ri sin (wsinTi+$si)), 

and using (2-7), (3-8) and (3-9) the corresponding spectrum can be calculated. 

5-4. Bunched, Transverse 

In this section, we consider the revolution frequency spread, the corresponding beta- 

tron tune spread, and the independent synchrotron oscillation frequency spread. 

The time domain function is 

N m 

i-1 n =-m 
j ( t )  = C c o s  (27rui t /Ti )  S(t--nTi+Tsin wsinTi)  (5-27) 

Using (5-11) and (5-19), the frequency spectrum is found, 

N w  co 

i=lk=-m n =-m 
+ Jk(WT+UiUiT) 6(U-nUi-k'SsifUjCdj)] (5-28) 

The energy spectrum is shown in Fig.14. To determine the bandwidth and the 

energy contained in each sideband, the approach used previously can be applied. We will 

not repeat the calculation here. 
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Fig.4b. Bunched Beam Energy Spectrum, Longitudinal. 
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Fig.5b. Bunched Beam Energy Spectrum, Transverse. 
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Fig.7b. Multiple Particle Amplitude Spectrum, Longitudinal. 
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Fig.8. Multiple Particle Amplitude Spectrum, Transverse. 
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Fig.9. Multiple Particle Amplitude Spectrum, Bunched, Longitudinal. 
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Fig.11. Schottky Noise Energy Spectrum, Longitudinal. 
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Fig.12. Schottky Noise Energy Spectrum, Transverse. 
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Fig.13b. Schottky Noise Energy Spectrum, Bunched, Longitudinal. 
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Fig.14. Schottky Noise Energy Spectrum] Bunched, Transverse. 


